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In this paper, the parametric instability of a Leipholz column under four
boundary conditions is examined. The study of this prototypical model is intended
to provide a basic understanding of the disc brake pad instability. The distributed,
follower-type axial load is assumed to be uniform and periodic. Instability regions
are obtained and the existence of combination resonances of the sum and di!erence
types is discussed for each set of boundary conditions. It is found that the
combination resonance of the sum type exists in all the cases of boundary
conditions considered, but the di!erence type exists only in the cases of
clamped-simply supported and clamped-free boundary conditions. The
combination resonance is shown to be as important as the simple parametric
resonance. Results, when compared to a column under a periodic end load, show
that the instability characteristics of these two columns are considerably di!erent.
The e!ect of a constant axial load is to shift the instability regions along the
frequency axis.

( 2000 Academic Press
1. INTRODUCTION

When an elastic beam is subjected to an axial compressive load, there exist critical
loads at which the beam buckles or #utters depending on the boundary conditions
and the application of the load. Beck [1] was the "rst to solve the #utter instability
of a cantilever beam under a tangential, compressive end load. This type of load is
called a follower-force which renders the system non-conservative, and the stability
of the system must in general be solved by a dynamic approach. Extensive studies
on the buckling and #utter of beams are well documented [2}6].

Among the follower-force problems, Leipholz [7, 8] examined the stability of
a beam subjected to an uniformly distributed axial load, called the ¸eipholz column,
under four sets of boundary conditions: pinned}pinned, clamped}clamped,
clamped}pinned, and clamped}free. It was shown that the lowest critical load of the
column with one of the "rst three sets of boundary conditions can be determined by
principles of stationarity, though the problems are non-self-adjoint. However, the
critical load for the clamped}free Leipholz column is of the #utter type and must be
evaluated by means of dynamics.

Parametric instability of columns excited by periodic end loads has been studied
extensively [3, 9, 10]. Depending on the boundary conditions, a parametrically
0022-460X/00/051097#17 $35.00/0 ( 2000 Academic Press



Figure 1. Schematics of a brake disc and pad system: (a) considering a strip of the brake pad,
(b) depicting the beam model for the brake disc}pad system.
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excited column can exhibit combination resonance of the sum and/or di!erence
types in addition to a simple parametric resonance [9]. This is explained by
examining the coupling dynamics of the normal modes of the unloaded problem
[11]. For example, combination resonance does not occur for a simply supported
column since inter-modal coupling does not exist. Parametrically excited systems
are time-dependent and closed-form solutions generally do not exist. Approximate
methods such as perturbations [11], harmonic/spectral balance method [12, 13],
incremental harmonic balance method [14] and Chebyshev-polynomial-based
numerical procedure [15] have been applied.

The purpose of this paper is to study the stability of a Leipholz column under
periodic loads. In particular, the e!ects of various boundary conditions on the
system stability are examined. The motivation of this work comes from a recent
study on the instability of disc brakes [16]. The necessary background for the
equation of motion is described in Appendix A. Consider a rotor (disc) and pad
system commonly employed in automotive and aircraft brakes, as shown in
Figure 1(a). Experimental results have shown that there is no nodal circle in the
disc vibration during brake squeal [17, 18], and that the pad and its boundary
conditionss contribute signi"cantly to the generation of brake noise [17}19]. For
these reasons, the dynamic stability of a strip of the pad, modelled as a beam
(depicted in Figure 1(b)), is investigated. Here, the frictional traction kN (N is the
normal contact force) is a distributed follower-type force tangential to the beam. It
is shown in Appendix A that the frictional traction depends on the disc rotating
frequency X

1
, the disc vibration frequency X

2
, and other parameters. Since X

2
AX

1
and X

1
@1 for most brake applications, the e!ects of X

1
are neglected as a "rst

approximation and the resulting stability problem becomes fundamentally similar
to a Leipholz column under periodic axial loads. To date, the parametric instability
of the Leipholz column has not been reported in the literature.
sFelske et al. [17] concluded from experiments that there are free}free bending or fastened}free
bending motions of the pads. However, it is in general di$cult to determine the exact boundary
conditions.
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This paper is organized as follows. The problem formulation and equation of
motion are described in section 2. The response solution based on a Galerkin
approach and stability analysis are outlined in section 3. In section 4, numerical
results for the parametric stability of the Leipholz column are presented for four
basic boundary conditions and are compared to those for the beam under
a periodic end load [9].

2. PROBLEM FORMULATION

Consider a beam subjected to a distributed axial load which varies periodically
with time ¹ as shown in Figure 2(a). Neglecting the coupling between the
transverse and axial vibrations, and applying the Euler}Bernoulli beam theory, the
equation of motion governing the tranverse vibration=(X, ¹ ) of the undamped
beam can be expressed as

oA
L2=
L¹2

#EI
L4=
LX4

#AP
L

X

(p
0
(m)#p(m) cosX¹ ) dmB

L2=
LX2

"0, X3(0, ¸), ¹'0,

(1)

where oA denotes the mass per unit length of the beam, EI the #exural rigidity,
¸ the span length, p

0
and p the static and dynamic load per unit length, respectively,

and X the excitation frequency. In this study, p
0

and p are assumed to be uniform.
Equation (1) is the form of the Leipholz column model [5] and the distributed axial
load represents a non-conservative follower-type force directed along the beam's
de#ection curve. The derivation of equation (1) from a model for the disc brake pad
vibration is shown in Appendix A.

Introducing the following non-dimensional variables and parameters,

x"
X
¸

, t"S
EI
oA

¹

¸2
, w"

=
¸

, pL
0
"

p
0
¸3

EI
, pL "

p¸3

EI
, u"S

oA
EI

¸2X , (2)
Figure 2. Schematics of a column subjected to (a) a distributed periodic load, (b) a periodic end
load.
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equation (1) can be expressed as

L2w
Lt2

#

L4w
Lx4

#(1!x) (pL
0
#pL cosut)

L2w
Lx2

"0, x3(0, 1), t'0. (3)

Due to the time dependency of the problem, it is not feasible to obtain
a closed-form solution to equation (3). Hence an approximate solution of the
following form is sought:

w(x, t)"
N
+

m/1

q
m
(t)u

m
(x) , (4)

where q
m
(t) is the generalized co-ordinate and u

m
(x) is the eigenfunction of the

associated unloaded problem of the beam. In this study, four sets of most common
boundary conditions are considered, namely simply}simply supported (S}S) or
hinged}hinged, clamped}clamped (C}C), clamped}simple (C}S), and clamped-free
(C}F). Substitution of w(x, t) from equation (4) into equation (3) and applying the
Galerkin's method yields

N
+

m/1
GqK mP

1

0

u
m
u

n
dx#j4

m
q
mP

1

0

u
m
u

n
dx#(pL

0
#pL cosut)q

m P
1

0

(1!x)uA
m
u
n
dxH"0,

n"1, 2, 2 , N , (5)

where dot"L/Lt, ( )@"L/Lx, j4
m
"u2

m
, and u

m
is the non-dimensional mth natural

frequency of the unloaded beam with speci"ed boundary conditions. The
orthonormalization properties of the eigenfunctions are

P
1

0

u
m
u

n
dx"

d
mn
a

, (6)

where d
mn

is Kronecker's delta and a is a normalization factor which takes the value
of 1 or 2 depending on the boundary conditions. Hence, equation (5) can be
rewritten as

qK#(A#apL
0
B#apL cosutB)q"0 , (7)

where

q"Mq
1
, q

2
, 2 , q

N~1
, q

N
NT, A

mn
"j4

n
d
nm

, and B
nm
"P

1

0

(1!x)uA
m
u
n
dx,

m, n"1, 2, 2 , N . (8)
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Equation (7) is a set of N second order, linearly coupled di!erential equations with
periodic coe$cients of Hill's type. Note that, due to the non-conservative loading,
B is asymmetric for all of the boundary conditions considered in this paper.
However, for columns under periodic end loads, B is diagonal for the S}S case and
is symmetric except for the C}F case [9]. Leipholz [7, 8] referred to three sets of
boundary conditions as fully supported rods (beams) and classi"ed the critical loads
as divergence type (S}S case) and pseudo-divergence type (C}C and C}S cases)
according to the loci of their eigenvalues. It was shown that their lowest critical
loads can be determined by means of statics although the problems
are non-self-adjoint. Hence, variational principles are applicable to these
non-conservative problems.

In what follows, the parametric instability of the Leipholz column represented by
the set of coupled Mathieu equations (7) is investigated. To understand the e!ects of
the distributed load on the system stability, results are also compared to those for
a column excited by a periodic end load as shown in Figure 2(b).

3. STABILITY ANALYSIS

The steady state solution to equation (7) can be approximated by the Fourier
series

q:estG
b
0
2
#

K
+
k/1

(a
k
sin kut#b

k
cos kut)H , (9)

where b
0
, a

k
, and b

k
are constant vectors which in general are complex-valued and

s is a characteristic exponent. Substituting q into equation (7) and balancing the
harmonic terms, the following system of homogeneous algebraic equations are
obtained:

a
0
"0, (A#apL

0
B#s2I)b

0
#apL Bb

1
"0 , (10a, b)

apL Ba
k~1

#2MA#apL
0
B#(s2!k2u2)INa

k

#apL Ba
k`1

!4skub
k
"0, k"1, 2 , K, (10c)

apL Bb
k~1

#2MA#apL
0
B#(s2!k2u2)INb

k

#apL Bb
k`1

#4skua
k
"0, k"1, 2 , K, (10d)

where I denotes the identity matrix. Let x"Mb
0
, b

1
, b

2
, 2 , b

K
, a

1
, a

2
, 2 , a

K
NT.

Equations (10) can then be rearranged into the following form:

(M
0
#sM

1
#s2M

2
)x"0 , (11)
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where M
0
, M

1
, and M

2
are the coe$cient matrices of ascending powers of s. Since

M
2

is non-singular, equation (11) is transformed into a state-space form by
introducing a state vector y"sx5 ,

0 I

!M~1
2

M
0

!M~1
2

M
1
G

x

y H"s G
x

y H . (12)

Note that similar solution methodologies have been applied to study the
parametric instability of time-dependent systems [3, 20, 21]. Equation (12)
represents an eigenvalue problem with a real asymmetric matrix, and the
eigenvalues are complex, s"s

real
#is

imag
, where i"J!1. The sign and

magnitude of s
real

determine the dynamic stability and the amplitude growth rate
for the given system, i.e., the steady state response is unbounded (unstable) when
s
real

'0, is oscillatory but bounded (critical case) when s
real

"0, and is
asymptotically stable when s

real
(0. However, due to unavoidable roundo!s in the

numerical computations and practical realization of the unbounded response, the
instability boundary is relaxed and chosen to be s

real
'10~5. The size of the square

matrix in equation (12) is 2N(2K#1). In the following numerical studies, N"4
and K"10 are chosen to capture any possible combination resonance and to
achieve a satisfactory convergence of the numerical solution in the case of large
excitation amplitudes.

4. NUMERICAL RESULTS

For the results presented herein, the excitation amplitude and frequency are
normalized by a critical buckling/#utter load, e"pL /pL

cr
, and the "rst natural

frequency of the unloaded problem, h"u/u
1

respectively. The critical load pL
cr

for
the Leipholz column is given in reference [7]. The non-dimensional load pL for the
column with an end load is de"ned as pL "p¸2/EI and the associated critical load is
given in reference [9].

4.1. SIMPLY}SIMPLY SUPPORTED BOUNDARY CONDITIONS

In this case, a"2, j
n
"nn, and u

n
(x)"sinj

n
x. Hence,

B"

!n2/4 !32/9 0 !256/225

!8/9 !n2 !216/25 0

0 !96/25 !9n2/4 !768/49

!16/225 0 !432/49 !4n2

. (13)

Figure 3 shows the stability diagrams where the parametric planes are
demarcated into stable and unstable regions as a function of excitation frequency



Figure 3. Stability diagram for a simply}simply supported column under (a) a distributed axial
periodic load, (b) a periodic end load. Shaded areas are unstable regions.
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h and the excitation amplitude e with pL
0
"0. Shaded areas denote unstable regions.

Figure 3(a) shows the results for the Leipholz column and Figure 3(b) for a column
excited by a periodic end load with the same excitation frequency. It is observed
that the general behaviour of the two di!erent systems is similar for the simple
parametric resonance occurring at h"2, 8, 18, and so on. However, the Leipholz
column displays additional notable unstable regions at h"5, 13, and 17 in the
given range of frequencies. As shown in Figure 3(a), these unstable regions are
readily identi"ed as the results of combination resonance of sum type: viz.,
u

1
#u

2
, u

2
#u

3
, and u

1
#u

4
respectively. These regions can be generalized as

u
m
#u

m`2n~1
, where m, n"1, 2, 3, 2. Since the natural frequencies of the S}S

beam are n2n2, n"1, 2, 3,2 , one may argue that the instability regions at
h"5, 13, 17 are due to combination resonance of di!erence type; viz.,
u

3
!u

2
, u

7
!u

6
, and u

9
!u

8
, respectively, instead of the sum type. However,

based on the criterion for small e given by Hsu [11], it is stated that the condition
for the existence of combination resonance of di!erence type is

Dh!(u
n
!u

m
) D(

apL
cr
e

2 S!

b
mn

b
nm

u
m
u

n

(m(n) . (14)

For this problem, condition (14) cannot be satis"ed with b
mn
'0, ∀m, n given by

equation (13). Therefore, combination resonance of the sum type exists for the
Leipholz column with simply supported boundary conditions, but not the
di!erence type. Note that a column with the same boundary conditions and excited
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by a periodic end load does not have any combination resonance as shown in
Figure 3(b).

4.2. CLAMPED}CLAMPED BOUNDARY CONDITION

In this case, a"1, j
n
"M4)73004, 7)85321, 10)99561, 14)13717,2N, and

u
n
(x)"cosh j

n
x!cos j

n
x!

cosh j
n
!cos j

n
sinh j

n
!sin j

n

(sinh j
n
x!sin j

n
x). (15)

Hence,

B"

!6)151 !6)685 4)865 1)537

!0)006 !23)025 !15)660 8)564

4)865 !4)628 !49)452 !28)529

3)350 8)564 !13)264 !85)793

. (16)

The corresponding stability diagram for this system is shown in Figure 4(a).
Similar results can be observed as in the previous case regarding the additional
unstable regions shown in Figure 4(a). In this case, combination resonance, of the
sum type between any two di!erent modes exists for the Leipholz column since
b
mn
O0 for any m and n. Note that the column with the same boundary conditions

and excited by a periodic end load exhibits combination resonance of the sum type
Figure 4. Stability diagram for a clamped}clamped column under (a) a distributed axial periodic
load, (b) a periodic end load. Shaded areas are unstable regions.
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only between mth and (m#2n)th modes (m, n"1, 2, 3, 2) as shown in
Figure 4(b). No combination resonance of a di!erence type exists for either column
model since b

mn
b
nm
'0 as in the S}S case.

4.3. CLAMPED}SIMPLY SUPPORTED BOUNDARY CONDITION

In this case, a"2, j
n
"M3)92660, 7)06859, 10)21018, 13)35177, 2N, and

u
n
(x)"sin j

n
x!

sin j
n

sinh j
n

sinh j
n
x . (17)

Hence,

B"

!3)608 !4)675 !0)142 !1)247

!1)680 !12)241 !10)324 !0)011

0)175 !5)177 !25)812 !17)897

!0)239 0)243 !10)659 !44)317

. (18)

Note that b
13

b
31
(0, b

24
b
42
(0, or in general

bmM2(m#n)!1NbM2(m#n)!1Nm(0 for odd m and n"1, 2, 3, 2 ,

bmM2(m#n)NbM2(m#n)Nm(0 for even m'0 and n"0, 1, 2, 2 .
(19)

This indicates that there exists a combination resonance of the di!erence type
between two modes satisfying the relationships given by equation (19). However, as
shown in Figure 5, these unstable regions are narrow and the amplitude growth
rates in these regions are negligibly small, about order of 10~5, under e is large. It is
also seen that the unstable regions for the Leipholz column are wider than the
column with a periodic end load. In particular, the widths of the unstable regions of
u

2
#u

3
and u

3
#u

4
are signi"cantly di!erent between the two column models.

4.4. CLAMPED}FREE BOUNDARY CONDITION

In this case, a"1, j
n
"M1)87511, 4)69409, 7)85476, 10)9955, 2N, and

u
n
(x)"cosh j

n
x!cos j

n
x!

cosh j
n
#cos j

n
sinh j

n
#sin j

n

(sinh j
n
x!sin j

n
x) . (20)

Hence,

B"

0)429 !4)337 4)856 !3)247

1)182 !6)647 !8)112 7)027

1)288 0)332 !22)952 !16)507

0)993 4)260 !4)170 !49)459

. (21)



Figure 5. Stability diagram for a clamped}simply supported column under (a) a distributed axial
periodic load, (b) a periodic end load. Shaded areas are unstable regions.
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Note that b
12

b
21
(0, b

14
b
41
(0, and b

23
b
32

(0. Therefore there exists
a combination resonance of the di!erence type as in the previous case. However, for
this case, it is di$cult to observe a general pattern of the combination resonance
between any two modes even by increasing the size of B. The following list gives the
"rst nine pairs of modes for which combination resonances of the di!erence type
occur: (1, 2), (1, 4), (1, 7), (1, 9), (2, 3), (2, 5), (2, 6), (2, 8), and (2, 10). For the
clamped}free column excited by a periodic end load, combination resonances of the
di!erence type occurs between the mth and (m#2n!1)th modes
(m, n"1, 2, 3, 2) [9]. Figure 6 shows the corresponding stability diagram for
each column model. It is seen that the unstable regions for both columns are much
wider than in the previous cases due to the absence of the geometric constraint at
the free end. It is observed that unstable regions for the column with a periodic end
load are wider than those for the Leipholz column.

Note that the stability diagrams do not reveal the amplitude growth rate of the
steady state response. This information is obtained by plotting s

real
against the h}e

plane for the unstable regions. Figure 7 shows the results for the C}F case. It is
observed that, for both columns, the growth rates and the widths in the region of
u

2
!u

1
are almost as large as those in the region of 2u

2
and are much larger than

those in the unstable region of 2u
1
. These results indicate that a combination

resonance of the di!erence type is just as important as the simple parametric
resonance.

Note that the above results are for pL
0
"0. When pL

0
O0, the natural frequencies

u8
j
of the Leipholz C}F column are obtained by solving the eigenvalue problem (7)

with pL "0. Figure 8 shows the loci of u8 as a function of the normalized follower
load (e

0
"pL

0
/pL

cr
; pL

cr
"40)7 for the Leipholz column [7], pL

cr
"20)05 for Beck's



Figure 6. Stability diagram for a clamped}free column under (a) a distributed axial periodic load,
(b) a periodic end load. Shaded areas are unstable regions.

Figure 7. The amplitude growth rate of the unstable frequency response for a clamped}free column
under (a) a distributed axial periodic load, (b) a periodic end load.
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Figure 8. Loci of natural frequencies for a clamped-free column under a distributed follower-type
axial load (**) and a follower-type end load (} } }).

Figure 9. Stability diagram for a clamped-free column under (a) a distributed axial periodic load,
(b) a periodic end load when pL

0
"0)48pL

cr
. Shaded areas are unstable regions.
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column [1, 9]). As expected, u8
1

and u8
2

coalesce at e
0
"1, leading to a #utter

instability. It is noted from Figure 8 that both columns show almost the same
qualitative relationships between u8

j
and e

0
. Figure 9 plots the regions of parametric

instability for pL
0
"0)48pL

cr
. Comparing Figures 6 and 9, it is seen that the major

e!ect of pL
0

is to shift the instability regions along the h-axis. This shift can be
predicted based on Figure 8. For example, the 2u8

1
and 2u8

2
regions are shifted to

the right and left of the frequency spectrum, respectively, while the u8
3
!u8

2
region

is not shifted much. Moreover, as e
0

increases (e
0
(1), u8

2
!u8

1
decreases and 2u8

1
increases such that u8

2
!u8

1
may become smaller than 2u8

1
, as shown in Figure 10

for e
0
"0)81. Thus, a combination resonance of the di!erence type may occur at

a frequency lower than that of the principal parametric resonance of 2u8
1
.

5. SUMMARY AND CONCLUSIONS

The parametric instability of a Leipholz column subjected to a periodic load is
examined for four sets of boundary conditions. This prototypical model is believed



Figure 10. Stability diagram for the clamped}free Leipholz column when pL
0
"0)81pL

cr
. Shaded

areas are unstable regions.

TABLE 1

Summary of the parametric instability characteristics for a column with di+erent sets
of boundary conditions

Boundary Combination Distributed load Concentrated
conditions resonance type (Leipholz column) end loads

Simple}simple Di!erence None None
Sum (m, m#2n!1)t None

Clamped}clamped Di!erence None None
Sum (m, n) (m, m#2n)

Clamped}clamped Di!erence (m, 2(m#n)!1) for odd m

(m, 2(m#n)) for even mA
None

Sum Other pairs of modes (m, n)

Clamped}free Di!erence (1, 2), (1, 4), (2, 3),B2 (m, m#2n!1)
Sum Other pairs of modes Other pairs of modes

sIwatsubo et al. [9].
tDenotes combination resonance of sum type between the mth and (m#2n!1)th modes, where

m, n"1, 2, 3, 2.
AFor this case only, n"0, 1, 2, 2.
BNo simple general pattern is observed (see section 4.4).
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to reveal the fundamental instability characteristics of a disc brake pad under
follower-type friction load. It is found that the boundary conditions strongly
determine the types of combination resonance. Moreover, the combination
resonance is shown to be as important as the simple parametric resonance. Results
are compared to those for a column excited by a periodic end load under the same
boundary conditions. It is found that the parametric instability of these two
columns are considerably di!erent and hence the e!ects of the distributed load
must be carefully considered in the model. For the Leipholz column, a combination
resonance of the sum type exists for all the boundary conditions considered in this
study. However, this is not true for the column under a periodic end load.
Moreover, the combination resonance of the di!erence type is found to be
signi"cant only in the clamped}free case for both columns. The occurrences of the
various types of combination resonances is summarized in Table 1. It is also shown
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that the constant follower load basically shifts the instability regions along the
frequency axis. As this load increases, the combination resonance of the di!erence
type may occur at a frequency lower than that of the principal parametric
resonance.

This study shows that the instability of a brake pad depends strongly on the
braking pressure and the friction material (these e!ects are embedded in the
parameter e), the design of the brake pad (through the boundary conditions), and
the design of the brake disc (u is related to the disc mode number). To avoid brake
pad resonance, the disc rotor must be designed so that its natural frequencies are
such that the associated modes would not excite the pad into resonance. Future
work underway includes the study of the brake pad instability with a non-linear
contact model.
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APPENDIX A: DERIVATION OF EQUATION OF MOTION

In this section, it is shown that the equation of motion governing the vibration of
a disc brake pad under the excitation of a rotating disc is fundamentally the same as
the prototypical Leipholz column model under periodic excitation. Experiments
have shown that there is no nodal circle in the disc vibration during braking
[17, 18]. This allows us to consider a strip of arbitrary width of the disc brake pad
as shown in Figure 1(a). Neglecting the curvature, the strip may be modelled as
a beam under a distributed normal load (due to brake pressure) moving at speed
v"RX

1
, where R is the radius corresponding to the strip and X

1
is the spinning

speed of the disc. The use of the beam-like model has been validated experimentally
[22], where the brake disc is modelled by an Euler}Bernoulli beam and the pad as
a foundation. The theory predicts an instability at seven nodal diameters (i.e., seven
nodal points in the beam model) and is veri"ed by experiments on a vehicle.

The relative sliding motion of the disc generates a distributed traction on the
surface of the pad due to friction. Assuming plane stress, the surface traction is
transformed onto the centroid of the beam as a distributed axial load kp

c
(see

Figure A1), where p
c

is the contact pressure and k is the coe$cient of friction
between the disc and pad. The interface tribology is complicated and other more
complex friction models have been proposed [23, 24].

The following assumptions apply to the brake pad model: (1) the brake disc and
pad lining are in a state of elastic conformal contact; (2) there is no loss of contact or
lift-o! at any point in the contact interface between the disc and pad lining; (3) the



Figure A1. Free body diagram of a beam element subjected to distributed transverse and friction-
induced axial load.
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material properties of the pad and k remain constant; (4) the variation of the
normal contact load is caused by the vibration of the disc and #uctuates about the
equilibrium state; and (5) other sub-structures such as the caliper piston, caliper and
its mounting bracket are considered rigid.

Based on these assumptions, the instantaneous distributed contact normal load
can be written as the sum of the static and dynamic normal loads,

p
c
"p

0
#p(X, ¹). (A1)

In general, p(X, ¹) is a non-linear function of the relative transverse displacement
between the disc and pad. Denote the transverse sti!ness of the pad lining by K.
Then p

c
may be expressed in terms of the transverse displacement as

p
c
(X, ¹)"K(D#d(X, ¹))n"K(D#=

r
!=)n, (A2)

where D is the equilibrium deformation of the lining due to braking pressure,=
r

and = are the transverse displacements of the rotor and pad respectively. The
constants K and n can be determined experimentally [24, 25]. Since the
displacement of a spinning disc mode in the circumferential direction is a harmonic
function,=

r
may be represented as

=
r
"f (cX!cRX

1
¹)g(X

2
¹ ), (A3)

where f ()) is the travelling wave component in the circumferential direction with
wavenumber c corresponding to the number of nodal diameters of the disc mode
and g()) is the excitation component as a function of the disc mode frequency X

2
.
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We assume a sinusoidal form for f ()),

=
r
"a sin(cX!cRX

1
¹) cos(X

2
¹ ) , (A4)

where a denotes a constant amplitude of the vibrating disc mode.
Figure 1(b) depicts the beam model in a state of vibration and a free body

diagram is shown in Figure A1. Neglecting the coupling between the transverse and
axial vibrations and applying the Euler}Bernoulli beam theory, the linear equation
of motion for the transverse displacement of the undamped beam under a moving
distributed load is

oA
L2=
L¹2

#EI
L4=
LX4

#

L
LX Ak P

L

X

Mp
0
#p(m, ¹)Ndm

L=
LXB#kp

c
(X, ¹)

L=
LX

#K
p

2
+
i/1

d(X!¸
i
)="p(X, ¹ ) , (A5)

which reduces to

oA
L2=
L¹2

#EI
L4=
LX4

#kP
L

X

Mp
0
#p(m, ¹)Ndm

L2=
LX2

#K
p

2
+
i/1

d(X!¸
i
)="p(X, ¹) ,

(A6)

where o denotes the mass density of the beam, A the cross-sectional area, EI the
#exural rigidity of the beam, ¸ the pad length, K

p
the (e!ective) elastic sti!ness of

the piston against the pad, and ¸
i
the locations of contact points between the piston

and pad.
Note that for the outer pad where there is no piston in most automotive disc

brake systems, K
p
"0. By equations (A2) and (A4) and enforcing X

2
AX

1
and

X
1
@1 for typical disc brake applications, p(m, ¹) is rewritten as p(m) cosX

2
¹. The

free vibration stability of the brake pad model (A6) thus reduces to equation (1)
which is a Leipholz column under a periodic, deformation induced follower-type
load.
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